If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2+40y=-7
We move all terms to the left:
12y^2+40y-(-7)=0
We add all the numbers together, and all the variables
12y^2+40y+7=0
a = 12; b = 40; c = +7;
Δ = b2-4ac
Δ = 402-4·12·7
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{79}}{2*12}=\frac{-40-4\sqrt{79}}{24} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{79}}{2*12}=\frac{-40+4\sqrt{79}}{24} $
| 3(4x-2)=2(6x-3)= | | 5x-3(x-4)=2(x-6)= | | 6x-15=3(2x-6)= | | 4x-16-2x=2(x-8)= | | 2(y+6)=7y+32 | | 2(w+1)+7=3(w-2) | | 5x-20=2(3x-10)= | | 5y-8=7(y-4) | | (x+3)(-6x)=360 | | (x+3)(x-6)=360 | | 5s+5s-8s+1=9 | | -8(w+3)=8w+8 | | 2d+2d-4=8 | | 10x-18+8x+2=180 | | -4w+6=2(w-9) | | 6(4x–3)–10x= | | 3w+2w-4w=12 | | 51-(3+5)x10=458 | | 1k-3(5+5)=54 | | 3x+x^2=72 | | 6q+q-4q+3q-2q=20 | | 0.33x+x=1808 | | 7v-2=4(v+4) | | 44/x=0 | | 20-2x=30-5x | | 9(x-6)=-6x-39 | | .05x-0.5=0.75+1-x | | 7u-2=-9(u+2) | | 6(w-5)=9w-9 | | -3(7p+5)=35 | | 13+k=31 | | 2x-(364.5/x^2)=0 |